Timetombs

泛义的工具是文明的基础,而确指的工具却是愚人的器物

66h / 117a
,更新于 2025-01-05T12:19:33Z+08:00 by   1072b1b

[Redis] benchmark

版权声明 - CC BY-NC-SA 4.0

1 基本概念

redis速度非常快,但是有多块呢?首先我们需要分析一下当client发起对server的调用到获得结果这段时间内都经历了那些主要的步骤,比如如下代码:

Jedis jedis = new Jedis("localhost");
String result = jedis.set("name", "lnh");

详细分解一下其中经历的主要步骤:

  1. client发起调用;
    1. 初始化网络连接(或者从client端维护的连接池中获取连接);
    2. 把java方法调用和数据对象序列化成RESP1协议格式;
    3. 写入网络I/O。
  2. 网络传输;
    1. 把上一步的转换成resp协议后的数据通过网络发送给server。
  3. server端处理调用;
    1. 接收请求数据,解析resp协议格式的数据;
    2. 执行解析后的command;如果开启AOF,则也会处理AOF的事情。
    3. 把执行结果序列化为resp协议格式。
  4. 网络传输;
    1. 把上一步的转换成resp协议后的数据通过网络发送给client。
  5. client接收响应;
    1. 读取网络IO数据,解析resp协议格式的数据。
    2. 反序列化为Java对象。

总结来说主要是3大块:client、网络传输、server。那么从使用者的角度来看,重点需要关注的在于client端的序列化以及网络连接消耗。比如采用了不合适的数据结构,导致每次需要传输的数据量过大;以及连接池的过大或过小,或者根本没,从而增大每次建立底层TCP连接的消耗;再有就是server端的配置导致一些额外的操作(aof的appendfsync配置2)、或者会导致长时间阻塞操作的命令导致的server端处理能力的下降。

有了对以上的基本概念的认知和理解后,就会发现有时候我们简单的写一个for循环重复取执行某一个操作的这种测试,其实是没有任何参考意义的,最终只是沦为对网络传输效率的测试。

2 测试工具

redis-benchmark3是redis提供的一个基准测试工具,可以模拟N个客户端同时发出M个请求。当然我们的基准性能测试并不能完全模拟出实际的业务调用,不过至少可以根据以上的基础概念,来组织出来近似的测试用例来检查我们所需的配置。

查看帮助redis-benchmark --help

Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests>] [-k <boolean>]

 -h <hostname>      Server hostname (default 127.0.0.1)
 -p <port>          Server port (default 6379)
 -s <socket>        Server socket (overrides host and port)
 -a <password>      Password for Redis Auth
 --user <username>  Used to send ACL style 'AUTH username pass'. Needs -a.
 -c <clients>       Number of parallel connections (default 50)
 -n <requests>      Total number of requests (default 100000)
 -d <size>          Data size of SET/GET value in bytes (default 3)
 --dbnum <db>       SELECT the specified db number (default 0)
 --threads <num>    Enable multi-thread mode.
 --cluster          Enable cluster mode.
 --enable-tracking  Send CLIENT TRACKING on before starting benchmark.
 -k <boolean>       1=keep alive 0=reconnect (default 1)
 -r <keyspacelen>   Use random keys for SET/GET/INCR, random values for SADD,
                    random members and scores for ZADD.
  Using this option the benchmark will expand the string __rand_int__
  inside an argument with a 12 digits number in the specified range
  from 0 to keyspacelen-1. The substitution changes every time a command
  is executed. Default tests use this to hit random keys in the
  specified range.
 -P <numreq>        Pipeline <numreq> requests. Default 1 (no pipeline).
 -e                 If server replies with errors, show them on stdout.
                    (no more than 1 error per second is displayed)
 -q                 Quiet. Just show query/sec values
 --precision        Number of decimal places to display in latency output (default 0)
 --csv              Output in CSV format
 -l                 Loop. Run the tests forever
 -t <tests>         Only run the comma separated list of tests. The test
                    names are the same as the ones produced as output.
 -I                 Idle mode. Just open N idle connections and wait.
 --help             Output this help and exit.
 --version          Output version and exit.

Examples:

 Run the benchmark with the default configuration against 127.0.0.1:6379:
   $ redis-benchmark

 Use 20 parallel clients, for a total of 100k requests, against 192.168.1.1:
   $ redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20

 Fill 127.0.0.1:6379 with about 1 million keys only using the SET test:
   $ redis-benchmark -t set -n 1000000 -r 100000000

 Benchmark 127.0.0.1:6379 for a few commands producing CSV output:
   $ redis-benchmark -t ping,set,get -n 100000 --csv

 Benchmark a specific command line:
   $ redis-benchmark -r 10000 -n 10000 eval 'return redis.call("ping")' 0

 Fill a list with 10000 random elements:
   $ redis-benchmark -r 10000 -n 10000 lpush mylist __rand_int__

 On user specified command lines __rand_int__ is replaced with a random integer
 with a range of values selected by the -r option.

从上述的帮助文档中可以看出它提供有如下几点功能:

  1. -c:并行的client的数量。
  2. -n:总的请求数量。
  3. -k:是否使用长连接。
  4. -r:value的数据块的大小。
  5. -d:key的随机大小。
  6. -P:pipline中的命令条数。
  7. -t:特定的命令。

3 测试用例

比如执行以下命令测试1000个随机key的setlpush结果:

$ redis-benchmark -t set,lpush -n 100000 -r 1000
====== SET ======
  100000 requests completed in 2.09 seconds
  50 parallel clients
  3 bytes payload
  keep alive: 1
  host configuration "save": 300 10
  host configuration "appendonly": yes
  multi-thread: no

Latency by percentile distribution:
0.000% <= 0.191 milliseconds (cumulative count 1)
50.000% <= 0.671 milliseconds (cumulative count 50901)
75.000% <= 0.887 milliseconds (cumulative count 75431)
87.500% <= 1.063 milliseconds (cumulative count 87642)
93.750% <= 1.215 milliseconds (cumulative count 93930)
96.875% <= 1.351 milliseconds (cumulative count 96973)
98.438% <= 1.479 milliseconds (cumulative count 98461)
99.219% <= 1.623 milliseconds (cumulative count 99234)
99.609% <= 1.823 milliseconds (cumulative count 99611)
99.805% <= 2.175 milliseconds (cumulative count 99807)
99.902% <= 2.559 milliseconds (cumulative count 99904)
99.951% <= 3.367 milliseconds (cumulative count 99952)
99.976% <= 4.991 milliseconds (cumulative count 99976)
99.988% <= 5.407 milliseconds (cumulative count 99988)
99.994% <= 5.647 milliseconds (cumulative count 99994)
99.997% <= 5.783 milliseconds (cumulative count 99997)
99.998% <= 5.831 milliseconds (cumulative count 99999)
99.999% <= 5.895 milliseconds (cumulative count 100000)
100.000% <= 5.895 milliseconds (cumulative count 100000)

Cumulative distribution of latencies:
0.000% <= 0.103 milliseconds (cumulative count 0)
0.002% <= 0.207 milliseconds (cumulative count 2)
1.928% <= 0.303 milliseconds (cumulative count 1928)
9.816% <= 0.407 milliseconds (cumulative count 9816)
24.073% <= 0.503 milliseconds (cumulative count 24073)
41.608% <= 0.607 milliseconds (cumulative count 41608)
55.195% <= 0.703 milliseconds (cumulative count 55195)
67.451% <= 0.807 milliseconds (cumulative count 67451)
76.876% <= 0.903 milliseconds (cumulative count 76876)
84.431% <= 1.007 milliseconds (cumulative count 84431)
89.594% <= 1.103 milliseconds (cumulative count 89594)
93.678% <= 1.207 milliseconds (cumulative count 93678)
96.161% <= 1.303 milliseconds (cumulative count 96161)
97.743% <= 1.407 milliseconds (cumulative count 97743)
98.650% <= 1.503 milliseconds (cumulative count 98650)
99.186% <= 1.607 milliseconds (cumulative count 99186)
99.424% <= 1.703 milliseconds (cumulative count 99424)
99.591% <= 1.807 milliseconds (cumulative count 99591)
99.672% <= 1.903 milliseconds (cumulative count 99672)
99.737% <= 2.007 milliseconds (cumulative count 99737)
99.773% <= 2.103 milliseconds (cumulative count 99773)
99.936% <= 3.103 milliseconds (cumulative count 99936)
99.957% <= 4.103 milliseconds (cumulative count 99957)
99.979% <= 5.103 milliseconds (cumulative count 99979)
100.000% <= 6.103 milliseconds (cumulative count 100000)

Summary:
  throughput summary: 47801.15 requests per second
  latency summary (msec):
          avg       min       p50       p95       p99       max
        0.723     0.184     0.671     1.255     1.567     5.895
====== LPUSH ======
  100000 requests completed in 2.09 seconds
  50 parallel clients
  3 bytes payload
  keep alive: 1
  host configuration "save": 300 10
  host configuration "appendonly": yes
  multi-thread: no

Latency by percentile distribution:
0.000% <= 0.215 milliseconds (cumulative count 3)
50.000% <= 0.687 milliseconds (cumulative count 51059)
75.000% <= 0.903 milliseconds (cumulative count 75163)
87.500% <= 1.087 milliseconds (cumulative count 87758)
93.750% <= 1.247 milliseconds (cumulative count 93851)
96.875% <= 1.399 milliseconds (cumulative count 96899)
98.438% <= 1.567 milliseconds (cumulative count 98484)
99.219% <= 1.767 milliseconds (cumulative count 99225)
99.609% <= 1.991 milliseconds (cumulative count 99610)
99.805% <= 2.167 milliseconds (cumulative count 99806)
99.902% <= 2.351 milliseconds (cumulative count 99903)
99.951% <= 2.503 milliseconds (cumulative count 99953)
99.976% <= 2.615 milliseconds (cumulative count 99976)
99.988% <= 2.687 milliseconds (cumulative count 99988)
99.994% <= 2.775 milliseconds (cumulative count 99994)
99.997% <= 2.831 milliseconds (cumulative count 99997)
99.998% <= 2.919 milliseconds (cumulative count 99999)
99.999% <= 2.975 milliseconds (cumulative count 100000)
100.000% <= 2.975 milliseconds (cumulative count 100000)

Cumulative distribution of latencies:
0.000% <= 0.103 milliseconds (cumulative count 0)
2.009% <= 0.303 milliseconds (cumulative count 2009)
10.383% <= 0.407 milliseconds (cumulative count 10383)
23.762% <= 0.503 milliseconds (cumulative count 23762)
39.616% <= 0.607 milliseconds (cumulative count 39616)
53.245% <= 0.703 milliseconds (cumulative count 53245)
65.687% <= 0.807 milliseconds (cumulative count 65687)
75.163% <= 0.903 milliseconds (cumulative count 75163)
83.127% <= 1.007 milliseconds (cumulative count 83127)
88.543% <= 1.103 milliseconds (cumulative count 88543)
92.636% <= 1.207 milliseconds (cumulative count 92636)
95.196% <= 1.303 milliseconds (cumulative count 95196)
97.006% <= 1.407 milliseconds (cumulative count 97006)
98.021% <= 1.503 milliseconds (cumulative count 98021)
98.705% <= 1.607 milliseconds (cumulative count 98705)
99.069% <= 1.703 milliseconds (cumulative count 99069)
99.314% <= 1.807 milliseconds (cumulative count 99314)
99.477% <= 1.903 milliseconds (cumulative count 99477)
99.629% <= 2.007 milliseconds (cumulative count 99629)
99.739% <= 2.103 milliseconds (cumulative count 99739)
100.000% <= 3.103 milliseconds (cumulative count 100000)

Summary:
  throughput summary: 47938.64 requests per second
  latency summary (msec):
          avg       min       p50       p95       p99       max
        0.736     0.208     0.687     1.295     1.687     2.975

piplining的测试对比,可以明显看出一次piplining中设置为10条命令时,性能翻了5倍!

$ redis-benchmark -t set,lpush -n 100000 -r 1000 -q 
SET: 47984.64 requests per second, p50=0.615 msec
LPUSH: 49875.31 requests per second, p50=0.615 msec

$ redis-benchmark -t set,lpush -n 100000 -r 1000 -q -P 10
SET: 248756.22 requests per second, p50=1.695 msec
LPUSH: 253164.55 requests per second, p50=1.639 msec

4 参考

上一篇 : [Redis] persistence
下一篇 : [Redis] 运行时架构